Identified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons.
نویسندگان
چکیده
Several lines of evidence suggest that 5-HT plays a significant role in presynaptic facilitation of the siphon sensory cells contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia. Most recently, Glanzman et al. (1989) found that treatment with the 5-HT neurotoxin, 5,7-DHT markedly reduced both synaptic facilitation and behavioral dishabituation. To provide more direct evidence for a role of 5-HT, we have attempted to identify individual serotonergic facilitator neurons. Hawkins (1989) used histological techniques to locate several serotonergic neurons in the ring ganglia that send axons to the abdominal ganglion and are therefore possible serotonergic facilitators. These include one neuron in the B cluster of each cerebral ganglion, which we have identified electrophysiologically and named the CB1 cells. Both glyoxylic acid histofluorescence and 5-HT immunofluorescence indicate that the CB1 neurons are serotonergic. In a semiintact preparation, the CB1 neurons respond to cutaneous stimulation which produces dishabituation and sensitization (such as tail shock) with an increase in firing, which may outlast the stimulation by 15 min. Intracellular stimulation of a CB1 neuron in a manner similar to its response to tail shock produces facilitation of the EPSPs from siphon sensory neurons to motor neurons, as well as broadening of the action potential in the sensory neurons in tetraethylammonium solution. These results strongly suggest that the identified serotonergic CB1 neurons participate in mediating presynaptic facilitation contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia.
منابع مشابه
Identified facilitator neurons L29 and L28 are excited by cutaneous stimuli used in dishabituation, sensitization, and classical conditioning of Aplysia.
Tactile or electrical stimulation of the skin can be used to produce dishabituation, sensitization, and classical conditioning of the gill- and siphon-withdrawal reflex in Aplysia. These behavioral effects are thought to involve presynaptic facilitation at the synapses from siphon sensory neurons to gill and siphon motor neurons. Facilitation of PSPs onto the motor neurons can also be produced ...
متن کاملRegulation of behavioral and synaptic plasticity by serotonin release within local modulatory fields in the CNS of Aplysia.
In Aplysia, serotonergic neurons are widely activated during sensitization training, but the effects of exogenous serotonin (5-HT) on reflex circuits vary, inducing short- or long-term synaptic facilitation or synaptic inhibition, depending on the site of application. During learning, it is possible that specific spatial patterns of 5-HT release evoked by training may produce different phases o...
متن کاملSensitizing stimuli cause translocation of protein kinase C in Aplysia sensory neurons.
The defensive tail-withdrawal reflex of Aplysia californica, mediated by identified sensory neurons in pleural ganglia that form synapses on motor cells in pedal ganglia, can be sensitized by stimulating the animal with electric shock. The neurophysiological basis of this simple form of learning is thought to be the increased release of transmitter by the sensory neurons. Earlier work has focus...
متن کاملSynaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP.
The neural changes accompanying sensitization of the gill-withdrawal reflex in Aplysia are associated with presynaptic facilitation at monosynaptic connections between sensory neurons and motor cells. To analyze the molecular mechanisms underlying the facilitation, the pharmacological actions of serotonin, octopamine, and dopamine were examined. Only serotonin enhanced synaptic transmission bet...
متن کاملActivation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in aplysia sensory neurons.
Short-term behavioral sensitization of the gill-withdrawal reflex after tail stimuli in Aplysia leads to an enhancement of the connections between sensory and motor neurons of this reflex. Both behavioral sensitization and enhancement of the connection between sensory and motor neurons are importantly mediated by serotonin. Serotonin activates two types of receptors in the sensory neurons, one ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 12 شماره
صفحات -
تاریخ انتشار 1989